Distance Transitive Graphs and Finite Simple Groups

نویسندگان

  • CHERYL E. PRAEGER
  • JAN SAXL
  • KAZUHIRO YOKOYAMA
چکیده

This paper represents the first step in the classification of finite primitive distance transitive graphs. In it we reduce the problem to the case where the automorphism group is either almost simple or affine. Let ^ be a simple, connected, undirected graph with vertex set Q. If oc, /? e Q, then d(a, j8) denotes the distance between a and /3 in §. Let G be some group of automorphisms of §. Then ^ is G-distance transitive if for any two pairs of vertices \\. For a e Q we write, for O^i^d, r,(*) = {/3| d(a,fi) = i}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

On Distance-transitive Graphs

Cameron's proof of this result is based on Sims' Conjecture, which has only been shown to hold using the classification of finite simple groups. In the final section of [1], Cameron indicates how Theorem 1 might be proved in an elementary fashion using Macpherson's classification of infinite distance-transitive graphs of finite valency [4]. Corollary 1 below provides the missing portion of this...

متن کامل

Affine Distance-transitive Groups

A fruitful way of studying groups is by means of their actions on graphs. A very special and interesting class of groups are the ones acting distance-transitively on some graph. A group G acting on a connected graph F = (VT, ET) is said to act distance-transitively if its action on each of the sets {(x, y)\ x, y e VT, d(x, y) = i} is transitive. Here VT and ET stand for the vertices and edges o...

متن کامل

5-Arc transitive cubic Cayley graphs on finite simple groups

In this paper, we determine all connected 5-arc transitive cubic Cayley graphs on the alternating group A47; there are only two such graphs (up to isomorphism). By earlier work of the authors, these are the only two nonnormal connected cubic arc-transitive Cayley graphs for finite nonbelian simple groups, and so this paper completes the classification of such non-normal Cayley graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1987